Continuous wavelet transformation of seismic data for feature extraction
نویسندگان
چکیده
منابع مشابه
Feature Extraction with Wavelet Transformation for Statistical Object Recognition
In this paper we present a statistical approach for localization and classification of 3-D objects in 2-D images with real heterogeneous background. Two-dimensional local feature vectors are computed directly from pixel intensities in square gray level images with the wavelet multiresolution analysis. We use three different resolution levels for the feature computation. For the first one local ...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملSpectral Decomposition of Seismic Data with Continuous Wavelet Transform
In this paper we present a new methodology for computing a time-frequency map for non-stationary signals using the continuous wavelet transform (CWT). The conventional method of producing a time-frequency map using the Short Time Fourier Transform (STFT) limits the time-frequency resolution by a pre-defined window length. In contrast, the CWT method does not require pre-selecting a window lengt...
متن کاملWavelet based feature extraction for phoneme recognition
In an effort to provide a more efficient representation of the acoustical speech signal in the pre-classification stage of a speech recognition system, we consider the application of the Best-Basis Algorithm of Coifman and Wickerhauser. This combines the advantages of using a smooth, compactly-supported wavelet basis with an adaptive time-scale analysis dependent on the problem at hand. We star...
متن کاملApply Wavelet-ICA Filter for Feature Extraction
Independent component analysis (ICA) is a new effective technique for separation of statistically independent sources existing simultaneously in observations. Generally, ICA requires that the number of sensors should be no less than the number of independent sources to ensure enough information for separation of all sources. In some practical applications, this requirement of ICA is not met and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Applied Sciences
سال: 2020
ISSN: 2523-3963,2523-3971
DOI: 10.1007/s42452-020-03618-w